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Abstract

How does the growing availability of data shape innovation? I propose that data analytics enables
a new way to search for novel combinations among technological components. Instead of being
tethered by past attempts or priors, inventors can use data to extract signals of what combinations
are more promising for follow-on experimentation. I investigate this emerging phenomenon in
the context of human genomics, where genome-wide association studies (GWASs) approximate
the ideal of a data-driven search for the genetic roots of diseases. My results show that novel
gene-disease associations introduced by GWASs span a wide portion of the genetic landscape,
are likely to involve neglected human genes, and on average are of higher scientific value than
comparable associations introduced by targeted studies. The latter result is stronger for genes
difficult to experimentally study, but becomes negative for genes already well known. Taken
together, these findings point to the potential and boundary conditions of data-driven search
strategies in technological innovation.
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1 Introduction
Innovation is generated by recombining ideas and technological components in novel ways (Flem-

ing, 2001; Schilling and Green, 2011). Each successful innovation can be further recombined,

hence constantly expanding the technological frontier (Weitzman, 1998). Yet, locating the combi-

nations that produce useful innovation becomes increasingly harder in the exponentially-growing

combinatorial space (Jones, 2009; Agrawal et al., 2019). Researchers have to adopt a search

strategy to decide which combinations to prioritize. Common heuristics include incremental mod-

ifications of past successful attempts (Stuart and Podolny, 1996), or reliance on scientific theories

to direct experimentation (Arora and Gambardella, 1994; Fleming and Sorenson, 2004). Both

these strategies operate by targeting familiar or well-understood subsets of the landscape, with the

unintended consequence of curtailing exploration in uncharted domains and eventually reaching

technological exhaustion (Fleming, 2001). Previous work has noted how this trade-off between

exploration and exploitation might be fundamentally unsolvable (March, 1991).

However, the rapid diffusion of “big data” and computational tools could provide an alternative

solution to this conundrum (Agrawal et al., 2019; Cockburn et al., 2019). For instance, phar-

maceutical firms use combinatorial chemistry to gather data on millions of candidate compounds

for prioritization or R&D efforts (Jayaraj and Gittelman, 2018). Startups and venture capitalists

use A/B testing and data analytics to triage entrepreneurial ideas at scale, iteratively testing many

configurations without being constrained by pre-specified designs (Azevedo et al., 2020; Koning

et al., 2022). Exploration firms sift through satellite photos to spot geographical areas worth

investing in across the entire world (Nagaraj, 2021). In all these cases, decision makers are using

large amounts of data to sort through vast combinatorial spaces and guide experimental attempts

(Wu et al., 2020; Agrawal et al., 2022). Data analytics allows to extract signals that locate the most

promising technological combinations, an approach that in this paper I call data-driven search.

But while data analytics is enabling a novel strategy for recombinant search, its effects on the

direction and impact of innovation are an open question. On the one hand, data-driven search

could address some of the shortcomings of targeted search. Access to comprehensive data on

the landscape might broaden the search scope and diversify knowledge production (Nagaraj et al.,

2020). Instead of being bounded to a small number of familiar components, analytical techniques

should facilitate recombinations from distant technological domains (Wu et al., 2020). On the

other hand, empirical evidence on the use of data analytics is ambiguous and shows large variance

in outcomes (Brynjolfsson et al., 2021). The possibility of cheaply generating data was found

to encourage incremental innovation (Deniz, 2020; Ghosh, 2021). Moreover, reliance on data in
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the absence of theoretical understanding makes it impossible to tease apart good leads from false

positives (Felin et al., 2021; Lou and Wu, 2021). Overall, the conditions under which data-driven

search strategies will improve innovation outcomes are unclear and have not yet been fully explored.

Empirical investigation of these ideas is challenging for three reasons. First, one needs to find a

setting in which the combinatorial space is well-defined and measurable. Next, there has to be

some variation in the availability of data (or possibility of easily generating them) that enables data-

driven search strategies. Finally, to empirically study data-driven search, one needs to characterize

distinct search processes and be able to tie them with the resulting innovation outputs. This is

especially difficult because the researcher can only see realized outcomes, without usually being

able to observe what kind of search strategy generated them (Kneeland et al., 2020). Understanding

the consequences of data-driven search requires finding a setting where all these conditions are

met at the same time.

In this paper, I address these challenges with a quantitative case study based on research that

aims to find the genetic roots of human diseases. First, genes and diseases constitute the relevant

components for this innovation problem. Any gene could in principle be tied to any condition,

hence generating a space of tens of millions of pairwise gene-disease combinations. The key

objective of researchers and firms is to find which combinations are the most promising for follow-

on clinical investigation and drug development. Second, sharp reduction in genotyping costs in

the early 2000s enabled a new approach to searching for new gene-disease associations, called

genome-wide association studies (GWASs). Traditionally, scientists interested in a disease would

pre-select one or a handful of genes for targeted analyses. Instead, GWASs exploit data on the entire

genome to provide signals on which genes are tied to the disease studied, without being limited to

a subset of the genomic space. Finally, by linking gene-disease combinations to the methods used

in the scientific articles that introduced them, I can infer what search process was used. Comparing

combinations introduced by GWASs to those discovered by candidate-gene studies allows me to

descriptively explore the characteristics and impact of data-driven search.

I assemble a new dataset that includes all gene-disease associations introduced in the period

1980-2016. The data raw data are taken from DisGeNET, the most comprehensive aggregator of

information of human gene-disease associations (GDAs). For each GDA, DisGeNET collects the

list of journal articles in PubMed that studied it. I consider the earliest of these papers as the one

that discovered the association, and the amount of follow-on work as a measure of its scientific

impact. Next, I classify each association by whether it was introduced by a GWAS or by traditional

candidate-gene approaches using data from the European Bioinformatic Institute. I focus on the
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impact of data-driven search on two related dimensions: the direction of search efforts and the

scientific potential of the gene-disease combinations uncovered.

The results of this empirical analysis suggest that data-driven search diversify innovation by ex-

ploring a wider portion of the genetic landscape. In baseline estimates, gene-disease combinations

discovered by GWAS are 154% and and 108%more likely to involve genes understudied or recently

discovered, respectively. This is due to the fact that genome-wide association studies remove the ex

ante choice of what genes to target, hence overcoming risk aversion and path dependency in search.

Further, this change of focus is consequential and leads to introducing GDAs of higher scientific

impact on average. Additional tests show that this effect grows in the context of genes complex to

experiment with, but it reverses and becomes negative for genes that are already well characterized

theoretically. A battery of robustness checks further validate these descriptive findings, confirming

that data-driven search helps to locate the best opportunities in rugged technological areas but it

can be suboptimal in known domains.

This work presents a case study that contributes to our understanding of the role of data in recom-

binant search. Most directly, it shows empirically how data analytics are changing pharmaceutical

research (Williams, 2013; Hermosilla and Lemus, 2019; Kao, 2022). However, the phenomenon

analyzed in this paper is general in nature and it is diffusing rapidly (Zolas et al., 2021). Studying

genome-wide association studies allows me to explore the precise dynamics through which data-

driven search affects the generation of innovation, thus contributing to the emerging literature on

the economic and business impacts of data (Jones and Tonetti, 2020; Farboodi andVeldkamp, 2020;

Bessen et al., 2021; Nagaraj, 2021). Moreover, the construct of data-driven search constitutes an

important addition to the theory of innovation search (March, 1991; Gavetti and Levinthal, 2000).

To date, there is little theoretical understanding of how data analytics is reshaping individual and

organizational search. Addressing this gap is of first-order importance in the age of big data, and

my work is a first attempt in this direction.

2 Theoretical Framework
2.1 Strategies for Recombinant Search

Searching for innovation requires costly experimentation with novel technological combinations

to generate knowledge about their value. Researchers and inventors do not usually make random

attempts, rather focusing on the portions of the combinatorial space that promise them the highest

returns. The choice of which combinations to explore is thus guided by pre-existing knowledge

and beliefs about the technological landscape searched (Klahr and Dunbar, 1988; Gavetti and
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Levinthal, 2000; Kneeland et al., 2020).

A few different strategies can be used to guide recombinant search. Inventors can start from

known combinations of components, and incrementally change them in small steps (Fleming and

Sorenson, 2001). Searching locally has the advantage of building upon existing capabilities, which

makes search more efficient and reduces variability in outcomes (Fleming, 2001; Kaplan and

Vakili, 2015; Gittelman, 2016; Arts and Fleming, 2018). Alternatively, inventors can also draw

upon scientific information to select the most promising technological combinations. Scientific

theories can change their mental representation of the technological landscape by both discouraging

them to try certain combinations and directly indicating which ones are predicted to yield the best

results (Nelson, 1982; Fleming and Sorenson, 2004). This form of theory-driven search exploits

known cause-effect relationships to funnel experimentation efforts in areas where inventors hold

a theoretical understanding of how components could be recombined (Arora and Gambardella,

1994; Felin and Zenger, 2017).

Both local search and theory-driven search operate by focusing attention on a restricted area

of the technological landscape. Local search happens in the neighborhood of past successful

attempts, hence neglecting a wide space of possibilities that require more radical departures from

the status quo. Theory-driven search rules out ex ante all the combinations theoretically deemed as

inferior, leading to never experimenting with them; however, any theory is bound to be imperfect

and contextual, which means that novel discoveries might require going against established beliefs

(Kuhn, 1962). The result is that with both strategies inventors have an incentive to focus on familiar

components, either because they are close to those previously used or because their characteristics

are theoretically well-understood (Arts and Fleming, 2018). The result is an artificial restriction

of the potential combinations considered by the innovator. If only combinations that are familiar

and easier to experiment with are explored, this could prevent the discovery of the most valuable

innovations (Rzhetsky et al., 2015).

2.2 Data-Driven Search

Recent years have seen the emergence and diffusion of data analytics (Zolas et al., 2021). Re-

searchers have started investigating its impact on corporate decision-making (Brynjolfsson and

McElheran, 2016), organizational structure (Wu et al., 2019), and human capital (Rock, 2019).

However, when focusing on innovation, the results are ambiguous and heterogeneous (Brynjolfsson

et al., 2021). Data technologies appear to support mostly incremental process improvements (Wu

et al., 2020), or even worse, lead to inferior outcomes in unknown domains (Lou and Wu, 2021).
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Both theoretical and empirical work shows that reliance on data might harm the generation of

innovation (Cao et al., 2021; Hoelzemann et al., 2022). These results seem at odds with the hype

surrounding big data analytics and underscore the need for a better understanding of how data are

used in the generation of novelty.

In this paper, I propose that data analytics affects innovation by enabling a new strategy to search

for promising technological combinations (Dougherty and Dunne, 2012). Instead of relying on

knowledge from past attempts or theoretical priors, inventors can use data to extract signals of

what combinations are more promising for follow-on experimentation. Data enables a global scan

of the combinatorial landscape that can lead directly to the best technological combinations, a

search strategy that I call data-driven search. Compared to targeted search, the innovator no longer

needs to pre-select a subset of components to recombine, a choice that is usually plagued by path

dependency, inertia, risk aversion, or even cognitive limitations. Instead, the key decision becomes

where to direct the data-collection effort: while bias could still exist in this choice, decreases in

data costs and increasing availability of technological maps suggest that data-driven search might

be of broader scope than other search strategies (Jayaraj and Gittelman, 2018; Nagaraj et al., 2020).

Data-driven search requires a few conditions to be feasible. First, the relevant characteristics of the

components to recombine must be measurable, ensuring that the space of possible combinations is

well-defined. This means that data-driven search will be of little help when trying to invent entirely

new technologies that do not emerge from old components (Wu et al., 2020). Second, there has to

exist an agreed-upon metric of technological potential on which the promise of each combination

can be assessed. This constitutes the objective function that data-driven search tries to maximize

by finding the candidate combinations that score highest on it. Third, and relatedly, it must be

possible to foresee the effect of novel combinations on the objective of interest. Taken together,

data-driven search requires that it is possible to predict the value of potential recombinations from

the data available on components. Appendix A presents an example from combinatorial chemistry

that illustrates how these boundary conditions define the feasibility data-driven search.

But how could data-driven search affect innovation outcomes in setting where it is viable? Data-

driven search allows to consider a wider range of combinatorial possibilities compared to targeted

approaches. This should remove the proclivity of inventors toward exploitation of known compo-

nents, possibly leading to diversify knowledge production. However, the effects on the value of the

resulting combinations are more ambiguous and hinge on two factors.1 First, the expected value

1I am grateful to Daniel P. Gross for suggesting me this way of conceptualizing data-driven search. Appendix A
provides additional discussions.
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from an expansion of the components searched will depend on how thick the right tail of outcomes

is vis-á-vis the left tail of inferior alternatives (Azevedo et al., 2020). If most of the additional com-

binations considered are low value, data-driven search might lead to worse outcomes. However,

research has shown that extreme outcomes are more likely in complex technological landscapes

where components are difficult to recombine (Fleming and Sorenson, 2001), suggesting that data-

driven search might yield better results in those cases. Second, it will also depend on how good

targeted search is. For well-known components, data-driven search will likely fare poorly, since

inventors are already able to locate and focus on the best combinations (Kaplan and Vakili, 2015).

3 Empirical Setting
3.1 Scientific Background

Genes are sequences of DNA bases that encode the “instructions” to synthesize gene products with

a fundamental role in the functioning of the organism. Knowing the genetic roots of diseases has

important practical consequences since many genes involved with diseases have been proven to be

effective drug targets (Nelson et al., 2015). For decades, researchers have focused on genes that are

individually responsible for diseases. However, this class of diseases (called Mendelian) is much

rarer than so-called complex diseases, such as diabetes, Alzheimer’s, or cancer. Complex diseases

are not due to a single genetic factor, but rather by many genes and their interaction with the

environment during the course of human life (Bush and Moore, 2012). Discovering all the genes

involved in each of the thousands of polygenic diseases requires searching through the ∼ 19, 000

known human genes. How do scientists look for for new gene-disease associations in this huge

combinatorial space?

Scientists traditionally followed a candidate-gene approach consisting in three main steps (Tabor

et al., 2002). First, the scientist would decide the disease to study, likely motivated by its prevalence

or funding availability. Second, shewould hypothesizewhat genesmight have a role in its aetiology.

Finally, she would focus the analysis on those gene, typically by means of family linkage studies,

case-control studies, or gene knockout in lab animals. Importantly, the selection of the target genes

reflects the search strategy followed by the researcher. One approach consists in looking in the

neighborhood of previously established gene-disease associations. For instance, once BRCA2 was

tied to female breast cancer, it was reasonable to expect that it could also be tied to other neoplasms.

This reasoning led Gudmundsson et al. (1995) to find that BRCA2 was associated to ovarian and

prostate cancer too. Alternatively, a researcher could use a more deductive approach and rely on

existing biological theory. This is how Cargill et al. (2007) linked the IL23R gene to psoriasis:
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knowledge of the role of IL12B in the metabolic pathway of IL23R together with the fact that

IL12B had been associated to psoriasis led them to correctly postulate the IL23R-psoriasis nexus.

Despite many successful examples like the ones discussed above, both these strategies led scientists

to consider only a limited number of genes. The result has been an extreme concentration of

attention towards previously established research patterns (Oprea et al., 2018; Stoeger et al., 2018).

Gates et al. (2021) report that 22% of gene-related publications referenced just 1% of genes. This

situation is suboptimal since our understanding of polygenic diseases would strongly benefit from

exploring a larger pool of genes. The excessive research emphasis on a handful of “superstar”

genes means that many potentially important genes are simply ignored (Edwards et al., 2011;

Stoeger et al., 2018). As a consequence, only around 10% of the potential drug targets highlighted

by the Human Genome Project have been targeted by approved drugs, leaving many therapeutic

opportunities still untried (Gates et al., 2021)

3.2 Genome-Wide Association Studies as Data-Driven Search

Starting from the early 2000s, two events concurred in providing an alternative to candidate-gene

studies. The first was the completion of the first phase of the International HapMap Project (2005).

The HapMap was designed to provide a detailed reference genome that could be used as the basis

to relate genetic mutations with phenotype changes (Bush and Moore, 2012). The second, and

related, was the diffusion of commercial genotyping microarrays. Unlike full genome sequencing,

DNA microarrays only detect the activity of specific genetic loci. The HapMap enabled to design

optimal microarrays markers that can be extrapolated to capture the characteristics of their genetic

surroundings, thus allowing to parsimoniously infer the characteristics of the whole genome (Bush

and Moore, 2012). The result of was a steep decrease in the cost of collecting data on genomes

that prompted the emergence of genome-wide association studies (Visscher et al., 2017).

Genome-wide association studies (or GWASs) are case-control studies where researchers sequence

a large number of genomes and look to see if any genetic variation is more likely to appear in

the group showing a specific trait rather than in the control group (Pearson and Manolio, 2008;

Uffelmann et al., 2021). Researchers start by collecting DNA samples both from both cases

and controls. All DNA samples are genotyped using DNA microarrays and imputed through

reference genomes to reconstruct full genotypes. Finally, researchers test for statistically significant

differences between the genotypes of cases and controls. The genes in which there are variants

strongly associated with the presence of a disease can be suspected to play a role in its aetiology,

hence being potential targets for pharmaceutical intervention. Appendix B presents additional
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details and an example of genome-wide association study.

Unlike candidate-gene studies, where researchers decide which subset of genes to target, GWAS

is a type of observational study that looks for genetic variants across the whole genome (Visscher

et al., 2017; Uffelmann et al., 2021). A genome-wide search approach permits to scan the entire

set of possible combinations, pointing directly to the most promising ones (Figure 1). In practice,

this search strategy removes one degree of freedom from the researcher, who is no longer required

to specify a genetic target ex-ante. This ensures that GWASs are unbiased with respect to prior

biological knowledge and beliefs, thus avoiding the tendency to focus on familiar genes. Genome-

wide association studies generate discoveries thanks to what directly emerges from the data, which

makes them a prime example of data-driven search (Evans and Rzhetsky, 2010).

Yet, genome-wide association studies have been harshly criticized for a number of shortcomings.

On the one hand, these studies are inherently correlational in nature, which means that there is

the risk that any GWAS finding could be a false positive (Marigorta et al., 2018). On the other

hand, even if the associations discovered by GWASs are statistically significant and replicable,

scholars have suggested that GWAS neglect more complex interaction structures between genes

(Boyle et al., 2017). Moreover, most associations explain a small fraction of the genetic variation

in disease susceptibility, which means that the therapeutic benefit from intervening on them would

be quite small (Goldstein et al., 2009). These criticisms explain why candidate-gene approaches

remain popular among many researchers, but no research to date has empirically explored whether

and under which conditions GWASs discover scientifically impactful gene-disease associations

4 Data
4.1 Information on Gene-Disease Associations

I construct a dataset of all novel gene-disease associations (GDAs) introduced in the period 1980-

2016. I retrieve such information fromDisGeNET (v7.0), an aggregator that is considered the most

complete repository of scientific results linking human diseases to their genetic causes (Hermosilla

and Lemus, 2019; Piñero et al., 2020). This database collects GDAs harvested from an array of

specialized sources, including curated datasets and raw publications. My data are at the GDA

level, and for each association I retrieve the list of journal articles indexed in PubMed that studied

it. I focus my attention on associations mapping a protein-coding gene to a disease, syndrome,

or abnormality with clear health implications.2 My final sample includes 358,390 gene-disease

2Scientists routinely complain that associations proposed in academic publications often turn out not to be robust. To
restrict the sample to the most plausible ones, I use the DisGeNET-provided Evidence Index to retain in my data
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associations between 14,112 genes and 15,039 narrow disease categories.

To identify which associations are introduced with a data-driven approach, I rely on the GWAS

Catalog, a manually curated source managed by the European Bioinformatics Institute (MacArthur

et al., 2017). The GWAS Catalog is the most reliable list available of genome-wide association

studies published in peer-reviewd journals. Studies are eligible for inclusion in the GWAS Catalog

if they include an array-based GWAS analysis that does not target any specific gene ex ante.

The Catalog also collects the details of the specific gene-disease associations tested in the study.

Following the best research practices, only associations with a high statistical significance (p-value

< 1.0×10−5) are considered (Marigorta et al., 2018). My sample includes 8,661 GDAs introduced

by 1,251 distinct genome-wide association studies. Panel (b) of Figure 1 shows the rapid growth

of GWASs since 2005, when the first such study was published.

I also gather a few additional gene level attributes. For each gene I record whether it has a homolog

gene in the lab mouse (Clarke, 2002; Murray et al., 2016). Homologs are genes inherited in two

species by a common ancestor, thus retaining similar functions and biological features. Since the

mouse is the most used scientific tool for gene knockouts (i.e., a lab technique to study the role of

a gene by preventing its normal functioning), genes without a mouse homolog are usually more

complex to experimentally study.3 Similarly, I code a variable for genes that are systematically

expressed in fewer tissues of the body. Gene expression is the process by which the information

encoded in a gene is used in the creation of a gene product, such as proteins (Lopes et al., 2021).

Certain genes are expressed only in select human tissues, which makes it less convenient to collect

genetic material for experimental studies. Stoeger et al. (2018) documents that for this reason,

scientists have historically focused on genes expressed in a large variety of body tissues.

4.2 Outcome Variables

My objective is comparing the characteristics of GWAS-established gene-disease associations

vis-á-vis associations established with a candidate-gene approach. To do so, I ask if conditional

on being introduced by a GWAS, gene-disease associations are more likely to present different

attributes. In particular, I focus on two outcome variables:

only associations for which contradictory results represent less than 10% of the available publications about them.
The results are robust to stricter thresholds, as well as to keeping the whole DisGeNET data. See the Appendix for
robustness checks.

3This intuition is confirmed in the DisGeNET data, where I observe that genes without a mouse homolog received on
average 22% less publications on how they might be implicated in human diseases. In general, reliance on model
organisms and the availability of gene homologs profoundly shapes research choices (Baba and Walsh, 2010).
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Underexplored Gene: The first dependent variable is a dummy that takes value one for gene-

disease associations that include a gene never associated to a disease before 2005. In additional

analyses, I use two alternative proxies to capture which genes received scant attention before

the emergence of GWASs. The first is the date of discovery of the gene, since many of the

genes mapped by the Human Genome Project are still overlooked due to path-dependent research

choices (Stoeger et al., 2018). Accordingly, I explore if GWASs are more likely to implicate

in a disease genes discovered after the year 2000. The second proxy is the presence of genetic

annotations dated before 2005, as recorded by the Gene Ontology (GO Consortium, 2021). A

Gene Ontology annotation is any statement about the function of a gene, which means that genes

without annotations received very little study.

Scientific Impact: The second dependent variable is a dummy that takes value one for gene-

disease associations that have a large scientific impact. Usually researchers rely on paper-to-paper

citation counts to measure impact, but this would be misleading in this context since GWASs are

highly cited on average (µGWAS=187 vs µTargetedSearch=42). This is due to a variety of reasons

unrelated with the scientific quality of the findings, such as reviews, criticisms, or commentaries

that discuss the results of the genome-wide approach. Therefore, I exploit DisGeNET to build

a cleaner measure of scientific impact: the number of papers that directly build upon the gene-

disease combination. These include empirical and experimental work that investigates the proposed

association, regardless of whether they cite the paper that introduced it, hence being a more truthful

measure of impact. For each year, I code as high-impact all new GDAs in the 95th percentile of

follow-on work received.

4.3 Summary Statistics

Table 1 lists the key variables used in the analysis with the summary statistics for the sample. Panel

A provides summary statistics about the publications that introduced new GDAs in the period

2005-2016. Besides being more cited than candidate-gene papers, each GWAS introduces on

average more associations spanning a larger number of genes. Panel B provides summary statistics

at the GDA level. Previewing the analysis follows, it appears that genes associated to a disease by

GWASs are more likely to be understudied and complex to experimentally study. The incidence

of high-impact associations is also higher for GWASs than for candidate-gene papers.
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5 Results
5.1 Data-Driven Search and the Scope of Innovation

I use OLS to estimate the following regression specification using gene-disease level data:

I(GDA with understudied gene > 0)i = α + β I(Introduced by GWAS > 0)i + γX i + εi,

whereX i include disease fixed effect and controls for year, journal prestige, and number of authors

of the paper that introduced GDA i. I(GDA with understudied gene > 0)i is an indicator

variable equal to one if GDA i includes an understudied gene. I(Introduced by GWAS > 0)i

takes value one for GDAs introduced by a GWAS, and zero otherwise. This specification compares

the difference between GDAs that have first appeared in a genome-wide association study with

GDAs that appeared in candidate-gene papers. If data-driven search leads to diversify search, then

I should find that the OLS estimate β is positive. All my specifications cluster standard errors

two-way at the gene and disease level.

Table 2 presents estimates from this regression. The main result is that genome-wide association

studies are significantly more likely to associate understudied genes with human diseases. Specifi-

cally, the estimate of β in Column 1 indicates an average increase of 0.20 percentage points on the

probability of combining a gene never associated to a disease before 2005, a significant increase

given that the baseline is about 0.13 percentage points. This means the likelihood of introducing

innovation encompassing little-studied genes is more than doubled, albeit on a low base-rate. Col-

umn 2 and 3 show that this result are robust to alternative definitions of gene popularity, including

the date of discovery of the gene and the absence of biological annotations in the Gene Ontology

before the emergence of GWASs. The results suggest that a change in search strategy forcefully

affects the direction of innovation, leading to consideration of otherwise short-changed genes.

Figure 2 presents an intuitive visualization of the combinatorial space of pairwise gene-disease

combinations. Comparing the areas searched by targeted studies with the findings of genome-

wide association studies illustrates the difference between the two strategies. New combinations

introduced by GWASs span a much wider area of the technological landscape, while targeted

search tends to replicate existing research patterns. Panel (b) also validates the global nature

of GWAS: for each disease investigated, the range of genes associated spans the entire genome.

However, the figure points to the fact that GWASs keep focusing on diseases historically well

studied. This confirms that the decision of where to direct the data-collection effort remains

crucial in determining the direction of search, but also that the results above are due to the search

strategy itself and not to a change in disease focus.
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Why do scientists keep focusing on a narrow subset of genes? One possibility is that this choice

is guided by specific gene functional characteristics that make them more meaningful to study.

To explore this idea, I consider new associations that recombine genes that are part of a gene

family. Such genes usually have the same name followed by a number that characterizes the order

in which they were historically discovered (e.g., BRCA1 and BRCA2, discovered in 1994 and 1995

respectively). Genes in a family are formed by duplication of a single original gene, and generally

share very similar biochemical functions (Daugherty et al., 2012). However, Stoeger et al. (2018)

document that the first gene of a family tends to be much more studied than the second member.

The discrepancy is large and cannot be explained by biological relevance (Gates et al., 2021).

Figure 3 shows that GWAS lead to diversifying the direction of search even in this case, raising by

20% the probability that the second gene in the family is recombined. This suggests that one of the

mechanisms through which GWASs help discovery is by counteracting inertial forces in scientists’

research paths.

5.2 When Does Data-Driven Search Lead to Better Innovations?

While the previous section showed that data-driven search broadens the scope of search, its impact

on the value of innovation is theoretically ambiguous. It could be that the diversification of genetic

focus comes at the cost of lower-valued innovations (Arts and Fleming, 2018). Whether reliance

on data outperforms targeted approaches, and the conditions under which this happens, is an

empirical question. In this section, I answer this question estimating the following specification:

I(GDA in top 5% of impact > 0)i = α + β I(Introduced by GWAS > 0)i + γX i + εi,

where I(GDA in top 5% of impact > 0)i is an indicator variable equal to one if GDA i is among

the top 5% most impactful combinations. All the other variables and controls are the same of the

specification in the previous section. Column 1 of Table 3 presents the results. New gene-disease

associations that first appeared in a genome-wide association study are on average 32%more likely

to be among those of high scientific impact.

The positive effect of data-driven search on the value of innovation is thus large and statistically

significant. Yet, it could be just a reflection of the change in genetic focus documented in the

previous section. If the new genes recombined by GWASs are intrinsically more likely to yield

high-value associations, then the result above would bemechanical. To investigate this possibility, I

estimate the samemodel with the addition of gene fixed effects, hence absorbing the cross-sectional

variation linked to a gene’s scientific potential. Column 2 of Table 3 shows that the magnitude of

the coefficient grows after the addition of gene fixed effects. Taken together, the estimates in Table

3 find that GDAs introduced by genome-wide association studies have on average higher scientific
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impact than comparable associations discovered with candidate-gene approaches.

In additional heterogeneity analyses, I use split sample regressions to explore how the results

above change for different subsets of genes. First, I restrict my attention to genes more complex

to experimentally study, either because they lack a homolog in the lab mouse or because they

are expressed in fewer tissues of the body (Stoeger et al., 2018). Figure 4 graphically shows the

estimates of β from the above specification. Compared to the baseline of Column 2 in Table 3,

the effect size grows by 50% in magnitude. The estimates are more noisy, reflecting the higher

variability of outcomes when recombining complex components, but it confirms that data-driven

search yields better outcomes on rugged terrains where breakthroughs are more likely to happen

(Fleming and Sorenson, 2001).

Second, I explore if targeted studies could be more effective in areas where scientists have better

biological knowledge. Figure 5 plots the share of high-impact GDAs in correspondence of each

gene, distinguishing by the search strategy that introduced them. Genes on the X axis are sorted

by the number of pre-2005 publications received. A striking pattern emerges: while the ability

of GWASs to introduce valuable gene-disease combinations is roughly constant across the genetic

landscape, candidate gene studies are much more effective for genes that have received more study

in the past. Auxiliary regressions in the Appendix confirm the pattern emerging from this graphical

representation, underscoring how targeted search yields higher value innovations in known areas

of the technological landscapes.

5.3 Robustness Checks

A. Considering Only Less Controversial Associations: Gene-disease associations require exten-

sive follow-on work to be validated and contradictory results on their robustness are not infrequent.

The main sample used in this paper considered associations for which DisGeNET reports less than

10% of contradictory papers on them. In Figure C.3 I test the robustness of the main results to

different selections of the sample, ranging from all DisGeNET associations to the inclusion of

only those for which no contrasting evidence exists. Results are robust and quantitatively similar

regardless of the sample chosen.

B. Epistemic Uncertainty of Data-Driven Findings: One might worry that the effects showed in

Table 3 are generally due to the fact that GWAS provide a less solid form of evidence, so that a

higher level of follow-on work would only be confirming that more research is necessary to validate

any data-driven finding. However, if this was the case, among GWAS-established gene-disease

links we should observe that those with more convincing evidence need less confirmatory follow-
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on work. To test this conjecture, I managed to match a subset of GWAS-established gene-disease

associations with their respective p-value. Table C.1 shows that more convincing gene-disease

links (i.e. those with lower p-values, hence higher -log10(p-value)) have also more follow-on work,

but just for understudied genes. It is indeed for those that a stronger p-value should help reduce

uncertainty more, hence generating larger scientific interest.

C. Alternative Measure of Scientific Validity: Instead of relying on the number of subsequent

publications as a measure of associations’ scientific potential, I carry out a robustness check

using DisGeNET’s GDA Score (Piñero et al., 2020). The GDA Score synthetically captures the

scientific reliability of the existing evidence on the gene-disease association. Table C.2 presents

the coefficient of the OLS regressions for each of the subsamples of genes analyzed in Section 5.2.

The results confirm the earlier findings on the effectiveness of data-driven search in introducing

combinations of higher scientific value.

6 Conclusion
In this paper, I explore how data shapes the search for innovation. Unlike local or theory-

driven search, I argue that data enables global search strategies that lead to more exploratory

experimentation. Empirical results in the context of genome-wide association studies confirm

this idea, showing that data-driven search is untethered by past choices. Data leads innovators to

experiment with short-changed areas of the technological landscapes and helps them to uncover

combinations of higher average value. The latter result is stronger in rugged areas of the landscape,

but targeted approaches are more effective when theoretical knowledge can be used to guide search.

This paper has practical implications for scientists, managers, and governments. For individual

researchers, my results show the conditions under which alternative search strategies are more or

less effective, suggesting that data analytics should be used especially when venturing in uncharted

domains. More in general, data analytics are diffusing in every sector of the economy, but the

returns remain heterogeneous and concentrated among few companies (Brynjolfsson et al., 2021).

My results provide an additional rationale for furthering investments in large-scale public data

sources that might enable data-driven search (Nagaraj et al., 2020; Kao, 2022).

It is also important to note that despite its large potential, data-driven search is not a panacea

for recombinant search. Exclusive reliance on data could itself end up hindering search, either

because it can lead scholars to look only “where the light is” (Hoelzemann et al., 2022) or because

blind reliance on available data might replicate their biases (Cao et al., 2021). Moreover, data

will be of little help when trying to invent entirely new technologies that do not emerge from old
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components (Wu et al., 2020). As such, data-driven search constitutes within-paradigm search that

might be subject to technological exhaustion unless new technological components are added over

time (Fleming, 2001).

Finally, despite the contributions outlined above, a few limitations of this paper must be acknowl-

edged. First, the present study is purely descriptive in nature. The results do seem robust to a

battery of tests, but my work does not account for the endogenous choice of whether to use data-

driven search or not. Second, the patterns documented are from a quantitative case study of a single

domain. The task of locating the genetic roots of human diseases is crucial for drug discovery, but

it has specificities that might not directly translate to other settings. While an increasing number of

domains is receiving complete maps of the relevant technological landscapes, just like the Human

Genome Project did for the genome, data-driven search might remain unfeasible in other contexts.

More research will be needed to investigate the external validity of my findings. Finally, my work

does not explore how data-driven findings affect the downstream generation of new drugs that build

over them. This is an exciting avenue for follow-up work that is outside the scope of my paper.
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7 Figures and Tables

Figure 1: The emergence of genome-wide association studies in the search for novel gene-disease
associations

(a) GWAS as data-driven search

(b) Yearly GWAS published

Note: Panel (a) shows depicts how a typical GWAS introduces a new gene-disease associations in the combinatorial
landscape. Each combination of gene and disease has a specific scientific value, captured by the elevation at that
location. Panel (b) shows the number of yearly genome-wide association studies published. Data are from the GWAS
Catalog (MacArthur et al., 2017). The vertical dashed line marks the completion of the Phase I of the HapMap project
in October 2005.

21



Figure 2: Genome-wide associations studies span a larger portion of the genetic landscape relative
to candidate-gene studies.

(a) GDA introduced by candidate gene studies

(b) GDA introduced by genome-wide association studies

Note: Panel (a) shows a heatmap of new gene-disease associations introduced with targeted search strategies after
2005. Panel (b) shows a heatmap of new gene-disease associations introduced with data-driven search strategies after
2005. Darker areas correspond to a higher introduction of new GDAs. Both panels have 14,112 genes on the X axis,
sorted from the most to the least studied in the pre-GWAS era, and 15,039 disease categories on the Y axis, sorted
from the most to the least studied in the pre-GWAS era.
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Figure 3: GWAS-introduced gene-disease associations are more likely to involve the second
member of a gene family.

Note: The figure plots the share of new gene-disease associations involving a gene family, divided by whether the
GDA involves the first or the second member of the family (e.g., BRCA1 vs. BRCA2). Data used in the graph are
limited to all new gene-disease associations introduced in the period 2005-2016. Only diseases targeted by at least
one GWAS are considered in this figure.

Figure 4: GWAS are especially effective to introduce high-impact gene-disease associations for
genes complex to experimentally study.

Note: The graph plots OLS coefficients and 95% confidence intervals from split sample regressions. All models
estimate the following specification: I(GDA in top 5% of impact > 0)i,j = α + β I(Introduced by GWAS >
0)i,j + δGenej FE + γXi,j + εi,j . The first coefficients is estimated on the full sample and provides the baseline
estimate. The second coefficient is estimated only on GDAs involving a gene that does not have a homolog gene in the
lab mouse. The third coefficient is estimated only on GDAs involving a gene expressed in few human body tissues.
See text for details.
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Figure 5: Gene-disease associations introduced by GWAS are less likely to be high-impact for
highly-studied genes.

Note: The histogram plots the share of high-impact GDA for each gene distinguishing by the type of study that
introduced them. The 14,112 genes on the X axis are sorted from the most to the least studied in the pre-GWAS era.
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Table 1: Descriptive statistics.

Panel A: paper level descriptives

Targeted search GWAS

mean median st d min max N mean median st d min max N
Forward citations 42.19 23 89.016 0 8084 140,777 186.97 83 368.668 0 6244 1,251
Rank of the journal (ventile) 13.27 14 5.063 1 20 140,777 17.55 19 3.737 2 20 1,251
Associations per paper 4.75 3 6.848 1 927 140,777 10.53 5 20.531 1 307 1,251
Genes per paper 2.14 2 3.031 1 690 140,777 6.76 3 12.014 1 169 1,251
Number of authors 9.04 8 6.542 1 445 140,777 38.49 25 44.472 1 565 1,251
Year 2011.09 2011 3.394 2005 2016 140,777 2012.27 2012 2.527 2005 2016 1,251

Panel B: association level descriptives

Targeted search GWAS

mean median st d min max N mean median st d min max N
With never recombined genes (%) 0.123 0 0.328 0 1 349,729 0.406 0 0.491 0 1 8,661
With recently discovered gene (%) 0.099 0 0.299 0 1 349,729 0.257 0 0.437 0 1 8,661
With never annotated genes (%) 0.480 0 0.500 0 1 349,729 0.675 1 0.468 0 1 8,661
With genes lacking mouse homolog (%) 0.052 0 0.221 0 1 343,446 0.060 0 0.238 0 1 8,524
With specific tissue expression genes (%) 0.247 0 0.431 0 1 349,729 0.271 0 0.444 0 1 8,661
In top 5% most impactful (%) 0.049 0 0.216 0 1 349,729 0.084 0 0.277 0 1 8,661
Year of the association 2011.08 2011 3.382 2005 2016 349,729 2012.68 2013 2.581 2005 2016 8,661
Note: Panel A presents descriptive statistics on papers that introduce new gene-disease associations after 2005. Forward citations= citations received
by the focal article up to 2020 inclusive (data from NIH iCite); Rank of the journal= ventile of journal prestige (data from SCImago Journal Rank);
Associations per paper= number of new GDA introduced; Genes per paper= number of genes associated to a disease. Panel B presents descriptive
statistics on new gene-disease associations introduced after 2005. With never recombined genes (%)= share of GDAs that include a gene never associated
to a disease before 2005; With recently discovered genes (%)= share of GDAs that include a gene discovered after the year 2000 (i.e., after the Human
Genome Project);With never annotated genes (%)= share of GDAs that include a gene without any annotations in the Gene Ontology before 2005 (data
from Gene Ontology); With 2nd member of a gene family (%)= share of GDAs that include the second member of a gene family, conditional on being
about that gene family (data on gene families from stoeger2018large); With genes lacking mouse homolog (%)= share of GDAs that include a gene
that does not have a gene homolog in the mouse (data from NIH); With specific tissue expression genes (%)= share of GDAs that include a gene is
systematically expressed in fewer tissues of the body (data from stoeger2018large); In top 5% most impactful (%)= share of GDAs that fall in the top
95th percentile of follow-on work (by year of discovery); Year of the association= year in which the article introducing the GDA is published.

Table 2: Genome-wide association studies are more likely to introduce gene-disease associations
involving less-studied genes.

Dependent Variable: I(GDA for never
associated gene>0)

I(GDA for recently
discovered gene>0)

I(GDA for never
annotated gene>0)

GWAS 0.201*** 0.111*** 0.140***
(0.0139) (0.0110) (0.0134)

Disease FE YES YES YES
Journal prestige FE YES YES YES
Year of discovery FE YES YES YES
Number of authors FE YES YES YES
N 352,409 352,409 352,409

Mean of the DV: 0.130 0.103 0.485
Number of diseases: 9,740 9,740 9,740
Number of genes: 14,086 14,086 14,086
Note: *, **,*** denote significance at 10%, 5% and 1% level respectively. Observations at the gene-disease association (GDA) level.
Std. err. clustered two-way at the gene and disease level. I(GDA for never associated gene>0):0/1=1 if the gene-disease association
involves a gene never associated to a disease before 2005; I(GDA for recently discovered gene>0):0/1=1 if the gene-disease association
involves a gene discovered after the year; I(GDA for never annotated gene>0):0/1=1 if the gene-disease association involves a gene
without any annotations in the Gene Ontology before 2005; GWAS=0/1=1 for GDAs introduced by a genome-wide association study.
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Table 3: Genome-wide association studies are more likely to introduce gene-disease associations
of high scientific impact.

Dependent Variable: I(GDA in the top 5%
of scientific impact > 0)

GWAS 0.016** 0.042***
(0.0063) (0.0069)

Gene FE NO YES
Disease FE YES YES
Journal prestige FE YES YES
Year of discovery FE YES YES
Number of authors FE YES YES
N 352,409 350,932

Mean of the DV: 0.05 0.05
Number of diseases: 9,740 9,726
Number of genes: 14,186 12,623
Note: *, **,*** denote significance at 10%, 5% and 1% level respectively.
Observations at the gene-disease association (GDA) level. Std. err. clustered
two-way at the gene and disease level. I(GDA in the top 5% of scientific
impact>0):0/1=1 if the gene-disease association involves a gene in the top 95th
percentile of follow-on work (by year of discovery); GWAS=0/1=1 for GDAs
introduced by a genome-wide association study.

26



Data-Driven Search and Innovation
Appendix

Matteo Tranchero

UC Berkeley

A Data-Driven Search and Innovation Outcomes

A.1 An Example from Combinatorial Chemistry

Consider for instance the important task of discovering new drugs. This is a difficult problem

since the chemical space is complex and high-dimensional (Rzhetsky et al., 2015; Jayaraj and

Gittelman, 2018). Historically, most successful molecules were serendipitously identified with

random search or in the neighborhood of known ones. This process was very long, costly, and

inefficient (Gittelman, 2016). More recently, high-throughput screening (HTS) of large synthetic

chemical libraries has opened up the possibility of large-scale rapid testing ofmillions ofmolecules.

This approach usually involves pre-selecting a subset of the chemical space that has drug-like

characteristics (e.g., small molecules with a weight theoretically deemed to be good for human-use

drugs) and sequentially testing them in physical assay plates (Jayaraj and Gittelman, 2018). Yet,

records of this approach have been mixed, since libraries are costly to maintain and the sequential

screening has proved hard to scale to larger chemical spaces (Le Fanu, 2011).

However, new computational approaches and databases might provide an alternative for in silico

testing that is not constrained by physical capacity or the compound libraries available. In a recent

paper, Stokes et al. (2020) used a neural network approach to find molecules with antibacterial

activity. Using data on known molecules to predict the bactericidal properties of structurally

divergent molecules, the authors of the study discovered a new compound called halicin that has

very promising antibiotic properties. This result was achieved with a fraction of the time and costs

involved in sequential assay screening, and it is all the more remarkable considering that until then

no clinical antibiotics had been discovered using targeted high-throughput screening (Stokes et al.,

2020).

Besides being a consequential example, the discovery of halicin also highlights the conditions

under which data-driven search is feasible. First, the relevant characteristics of all the potential
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components to recombine must be observable. In the case of drug discovery, for example, this

translates into the need to measure the structural properties of chemical compounds screened.

While almost tautological, this first condition restricts the scope of data-driven search to settings

in which components are identifiable and measurable. Second, there has to exist an agreed-upon

metric of technological potential on which the promise of each combination can be assessed. This

constitutes the objective function that data-driven search tries to maximize by finding the candidate

combinations that score highest on it. For Stokes et al. (2020) this was the growth inhibition of

Escherichia coli, but is worth noting that a search guided only by data might not be feasible in

fuzzier contexts where even the outcomes of the problem are ill-defined. Third, and relatedly, it

must be possible to foresee the effect of novel combinations on the objective of interest. Going

back to the example of antibiotics, this pertained to the prediction of whether a new compound

could inhibit the growth of bacteria based on its structure.

A.2 When Does Data-Driven Search Yield Better Results?

Search strategies that operate by restricting the combinatorial space based on priors or experience

face a clear trade-off. On the one hand, they decrease variability in outcomes and funnel experi-

mentation on components expected to guarantee the highest payoffs. On the other hand, they limit

the likelihood of new discoveries in underexplored areas of the technological landscape, potentially

missing out on many innovations (Rzhetsky et al., 2015). Instead, data-driven search allows to

consider a wider range of combinatorial possibilities, possibly leading to diversify knowledge pro-

duction. Reliance on data to guide recombinant search removes the proclivity toward exploitation

of known components. But will this lead to combinations of higher value? Existing research has

found that more exploration often comes at the cost of lower-value inventions (Arts and Fleming,

2018). Therefore, whether data-driven search will ultimately improve the outcomes of search is an

empirical question.

In this section, I present a simple statistical framework to explore the conditions under which

data-driven search might overperform targeted search. Without loss of generality, we can represent

search as starting from one component at a time, and then looking at which other component

combine with it. More complex innovation involving several components can just be thought of

as an iteration of this pairwise recombinant search. Each potential pairwise combination has a

specific value, which gives rise to a distribution of outcomes. As in most innovation problems,

we can safely assume that the distribution is very skewed: the majority of combinations are worth

nothing, while a few are very valuable (Silverberg and Verspagen, 2007). The innovator can thus
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be imagined drawing from this distribution of outcomes, whose expected value and variance are

synthetic measures of the average outcomes and the risk involved in search.

Against this backdrop, we can think how different search strategies might impact expected out-

comes. Targeted search considers a subset of components expected to be of higher-mean, hence

restricting the domain of the outcome distribution and resulting in a truncated distribution (Panel

(a) of Figure C.1 shows an example). Truncated distributions have smaller variance – intuitively,

they restrict the range of outcomes, thus limiting variability. In my context, this means that targeted

search is less risky. However, the effect on truncation on the expected outcome depends on the

interval over which the distribution has been truncated. For instance, if targeted search truncates

the outcome distribution only from below, some probability mass has been shifted to higher values,

hence increasing the yield of search. This would be the case if targeted search helps innovators

to avoid dead ends and useless combinations (Fleming and Sorenson, 2004). The opposite would

happen if search gets stuck on a suboptimal set of components (Fleming, 2001).

As argued in the previous section, data-driven search increases the breadth of components con-

sidered relative to targeted approaches. In the limit case when data on the entire landscape are

available, the outcome distribution will be the true underlying distribution. Yet, whether this will

lead to higher payoffs is ambiguous, and hinges on two factors. First, it will depend on how good

targeted search is. If the outcome distribution is truncated from below and centered on the top tail,

then any broadening of search will reduce the average payoff. This should be especially true when

considering well-understood components, since inventors are already able to locate and focus on

the best combinations (Kaplan and Vakili, 2015). Second, when targeted search truncates the out-

come distribution from both sides (Panel (b) of Figure C.1), the expected value from an expansion

of the domain will depend on how thick the right tail of outcomes is vis-á-vis the left tail of inferior

alternatives (Azevedo et al., 2020). Research has shown that the right tail of extreme outcomes is

thicker in complex technological landscapes where components are difficult to recombine (Fleming

and Sorenson, 2001). In those cases, data-driven search might yield better results than targeted

approaches.

B Genome-Wide Association Studies: Additional Details

Genome-wide association studies (GWAS) are case-control studies where researchers sequence the

genomes from many people and look to see if any genetic variation in the DNA is more likely to

appear in the group showing a specific trait rather than in the control group (Pearson and Manolio,
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2008; Uffelmann et al., 2021). Figure C.2 provides a stylized depiction of a typical genome-wide

study. Researchers start by collecting DNA samples both from people affected by the disease of

interest and from healthy people. Then they use DNA microarrays to sequence genetic markers

scattered throughout their genomes to reconstruct the genotype of the people in the sample. Finally,

researchers test for statistically significant differences in their genotypes. Results are adjusted to

account for multiple hypothesis testing and are graphically represented as a “Manhattan plot”

showing the p-value of multiple statistical tests between DNAs in the case and control groups.

The Y-axis is usually presented as -log10(p-value), hence higher values correspond to stronger

associations.

C Additional Figures and Tables

Figure C.1: Consequences of alternative search strategies on the distribution of outcomes.

(a) Targeted search as a truncated distribution (b) Targeted search vs. data-driven search

Note: Panel (a) exemplifies targeted search as a truncated distribution of outcomes. If for a given combinatorial
problem there is a distribution of possible outcomes, then restricting the components considered will lead to over-
sampling a high-mean subset of the population (in this case, the part on the [A,B] support). Panel (b) compares
targeted search with data-driven search, which considers a wider range of potential combinations. While the variance
of data-driven search will be higher, the comparison between expected values will depend on i) how good targeted
search is; ii) how thick is the right tail of the outcome distribution compared to the left tail.
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Figure C.2: Schema of how a typical genome-wide association study unfolds.

Note: The genome of people with and without a certain condition are sequence in search of significant differences;
the panel at the bottom is the “Manhattan plot” which indicates the location in the chromosome of the statistically
significant genetic variants. On the Y-axis there is the strength of the finding expressed as -log10(p-value), hence
higher values correspond to stronger associations.

Figure C.3: Robustness of the main results to the choice of sample.

(a) I(GDA in never associated gene>0). (b) Scientific publications on the GDA.

Note: Panel (a) plots the coefficients and 95% confidence intervals of the regression of the likelihood that gene-
disease associations discovered after 2005 involve an understudied gene on a dummy that indicates if the association
was introduced by a GWAS. Panel (b) plots the coefficients and 95% confidence intervals of the regression of the
number of follow-on scientific publications received by gene-disease associations discovered after 2005 on a dummy
that indicates if the association was introduced by a GWAS. In each case the sample is restricted to associations
with increasing values of the DisGeNET’s Evidence Index, which captures the share of contradictory results on the
association (EI =

Npositive pubs

Ntotal pubs
). The main analyses of the paper were done on the sample of EI > 0.9.
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Table C.1: New gene-disease associations introduced by GWAS receive more follow-on work if
the statistical association with the disease is stronger.

Dependent Variable: Scientific publications on the association

Subsample: Genes previously
associated

Genes never
associated

-log10(p-value) 0.028 0.192**
(0.0306) (0.0922)

Gene FE YES YES
Disease FE YES YES
Journal prestige FE YES YES
Year of discovery FE YES YES
N 2,921 1,808

Mean of the DV: 1.013 0.971
Number of genes: 729 490
Number of diseases: 401 286
Note: *, **,*** denote significance at 10%, 5% and 1% level respectively. Observations at the
gene-disease association (GDA) level. Std. err. clustered two-way at the gene and disease level.
Scientific publications on the association= number of follow-on scientific articles on the new GDA
identified. -log10(p-value)= statistical strength of the gene-disease association found by GWAS;
higher values correspond to stronger associations. The first column considers all the GDA that
involve a gene associated to a disease before 2005; the second column refers to all new GDA that
involve a gene never associated to a disease before 2005.

Table C.2: Robustness of the main results to the use of DisGeNET’s GDA Score as dependent
variable.

Dependent Variable DisGeNET GDA Score for gene-disease associations

Subsample All genes Genes in mouse Genes w/ specific
expression

GWAS 0.037*** 0.044*** 0.048*** 0.048***
(0.0055) (0.0054) (0.0103) (0.0066)

Gene FE NO YES YES YES
Disease FE YES YES YES YES
Journal prestige FE YES YES YES YES
Year of discovery FE YES YES YES YES
Number of authors FE YES YES YES YES
N 367,594 366,133 16,434 88,118

Number of diseases: 10,081 10,068 1,986 5,604
Number of genes: 14,089 12,641 745 3,450
Note: *, **,*** denote significance at 10%, 5% and 1% level respectively. Observations at the gene-disease association (GDA) level.
Std. err. clustered two-way at the gene and disease level. GDA Score= synthetic measure of scientific reliability of the gene-disease
association provded by DisGeNET; GWAS=0/1=1 for GDAs introduced by a genome-wide association study.
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