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1. Introduction 

In the late 1990’s one uses a cell phone to call a friend to tell about one’s first-time access to 

the internet on a personal computer. Back then both devices had very little in common: the cell 

phone, maybe produced by the then-popular Finish company Nokia, was used mainly to make 

phone calls (especially when the internet line was occupied); the personal computer, maybe a 

PC from the American IBM, was used mainly for computing, word processing and maybe 

playing games. In the early 2020’s, it is hard to differentiate one from the other. If one owns 

both devices, they may be produced by the same company, which may also produce tablets, 

smartwatches, smart TVs, and similar devices.  

The similarity between these devices is captured through the concept of relatedness, which 

considers that some elements share commonalities that favour them to be developed in 

tandem. The concept, translated to a geographical context in Hidalgo et al. (2007), was highly 

influential, creating what became known as the ‘evolutionary turn’ in the field of economic 

geography (Boschma & Martin, 2007). Subsequent research stressed the role of relatedness 

to predict the activities that a location will enter or exit in the future (Balland, 2016) and also 

discussed how industrial policy can influence local relatedness so that particular technologies 

or industries can be developed (Balland et al., 2019). Relatedness-based policies were 

introduced in several countries including the Smart Specialisation Strategy adopted by the 

European Union (Hidalgo, 2021).  

Despite growing research on the theme, we still know very little about how relatedness 

emerges and changes over time (Hidalgo, 2021; Juhász et al., 2021). In our illustrative 

example, this is similar to say that the communalities between cell phones and computers 

didn’t change. This is unlikely. After all, technologies evolve (Arthur, 2009), including the way 

in which they are combined to create products. The dynamic nature of relatedness is also 

relevant for industrial policies: should they aim at pushing local knowledge towards the latest 

technological development, or at strengthening the particularities of existing local technological 

paths (see for example Marrocu et al. (2020))?  
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We advance the state-of-the art by analysing i.) how the relatedness of innovations linked to a 

particular technology changed over time, ii.) how these changes affected the local exploration 

of this technology in countries leading its development, and iii.) how new capabilities related 

to this technology were developed in these countries. We do so at the example of Artificial 

Intelligence (AI), which is modular (Nilsson, 2009) and transversal (Righi et al., 2020) in nature. 

This makes it a suitable choice, since modularity allows AI to be coupled with other 

technologies, which indicates a particular potential for recombination. Transversality refers to 

possible use of AI across a variety of technological sectors, so that distinct technological paths 

related to AI are likely to emerge locally. Furthermore, our study focuses on the US, Japan, 

South Korea, and China as the four countries leading AI development during the observation 

period (1974 - 2018).  

Our findings indicate that the technological relatedness of AI evolves, documented by different 

combination patterns that emerged over time through its development. However, we also 

document that these combination patterns were not simply replicated by local developments. 

Instead, countries developed AI following their existing knowledge-bases, i.e., by exploring AI 

in fields in which they already had some local comparative advantage. This pattern was 

reinforced the more countries accumulated knowledge about AI. Hence, we argue that AI 

‘break-in’ into local technological paths by being adopted mostly in areas where countries hold 

an existing comparative advantage. The reverse situation, in which AI would ‘breakthrough’ 

existing technological paths by emerging independently in areas particular to AI and decoupled 

from existing knowledge-bases, is shown to produce comparative advantages in AI that are 

short-lived. 

This paper is structured as follows. Section 2 presents the relevant theory on relatedness and 

formalizes the research questions. Section 3 describes the data and method, followed by 

Section 4 in which the empirical findings are presented. Finally, Section 5 discusses the main 

findings, outlines theoretical contributions, policy implications, and existing limitations of our 

approach.  
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2. Theoretical background 

2.1. The notion of relatedness 

The consideration of how distinct technologies relate to each other has been crucial to explain 

local technological development (Balland, 2016; Boschma et al., 2014; Petralia et al., 2017; 

Rigby, 2015) and the emergence of new industries (Colombelli et al., 2014; Feldman et al., 

2015; Neffke et al., 2011; Tanner, 2016). The underlying relationship between technologies is 

captured through the concept of relatedness. The concept is tied to the idea of absorptive 

capacity (Hidalgo, 2021), which refers to the premise that firms’ ability to absorb new 

knowledge depends on their prior level of related knowledge (Cohen & Levinthal, 1990). 

Breschi et al. (2003) proposed the concept considering the commonalities between distinct 

types of knowledge. Hidalgo et al. (2007) extended it by arguing that local factors also affect 

the creation of commonalities. These local factors include the institutions, infrastructure, 

physical factors, and technologies existent in a given location. These communalities explain 

distinct patterns of development seen at the geographical level. 

The ‘knowledge space’1  framework proposed in Hidalgo et al. (2007) became popular in 

subsequent analyses in the Evolutionary Economic Geography (EEG) literature. This 

framework is commonly depicted as a network, where nodes represent knowledge categories, 

such as technological or scientific fields, and links between them represent their degree of 

relatedness (Balland, 2016). For technologies, this network is especially useful to represent 

visually how they are related, and how local technological paths emerge due to these relations. 

Empirical evidence shows that these paths are strongly linked to existing local capabilities, 

including technological paths seen in cities (Boschma et al., 2014; Rigby, 2015), regions 

(Buarque et al., 2020; Colombelli et al., 2014; Van Den Berge & Weterings, 2014), and 

countries (Hidalgo & Hausmann, 2009; Petralia et al., 2017).  

                                                           
1 Although ‘knowledge space’ in the broader generalization of the framework, the original term used in Hidalgo 
et al. (2007) was ‘product space’, once the focus was products exports; later variations like ‘technological 
space’ and ‘scientific space’ were used to refer to technologies and publications, for example, as highlighted in 
Balland et al. (2016). 
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The concept seems also able to predict even the emergence of radical technologies. In 

particular, Tanner (2016) shows that existing knowledge in areas relevant to fuel cell industries 

explains the local emergence of this disruptive technology. The higher the variety of 

specialisations of regions in related fields, the more likely it is that they develop this type of 

industry (ibid).  

2.2. Research questions 

Despite the central role of relatedness in the EEG literature and in the ‘knowledge space’ 

framework, there is surprisingly little consideration on how it emerges and changes over time 

(Hidalgo, 2021). Relatedness has been treated mainly as an independent and almost 

exogenous factor (Juhász et al., 2021). Only selected recent studies analyse relatedness as 

being dynamic and endogenously created. For example, Kuusk and Martynovich (2021), find 

that inter-industry relatedness changes considerably over time and that this change influences 

regional employment growth. Juhász et al. (2021) focus specifically on technological 

relatedness. They find that co-location of technologies and relatedness not only change over 

time but also affect each other: The more two technologies overlap within spatial distributions, 

the greater is the change in their relatedness. As relatedness between two technologies 

increases, so does the probability of them being co-located in the same geographical space.  

 Although geography - in terms of locational specific factors - plays a crucial role, relatedness 

is also affected by technological changes. In particular, Juhász et al. (2021) find that when two 

distinct technologies are combined once, the likelihood that they are combined again (and thus 

become more related) increases. Similarly, the literature on recombinant innovations stresses 

that previously unrelated technologies may become related due to new technological 

combinations (Castaldi et al., 2015; Frenken et al., 2012), regardless of geography. The 

underlying mechanism is that successful technological variations are selected and retained 

globally through dissemination (Arthur, 2009). In this way, successful new variations are 

repeated globally, increasing the relatedness between the recombined technologies. Local 
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conditions, in turn, affect how these successful new variations are disseminated, generating 

distinct geographical patterns of adoption. 

Albeit not yet recognising directly the existence of this mechanism, the EEG literature does 

find evidence of firms leaving locations due to unexplained local technological changes 

(Boschma et al., 2014; Rigby, 2015). As the possibility of ‘foreign’ technological development 

is not yet addressed, these exits are presented without further discussions on why they 

happen. This effect has alternatively been discussed through the notion of technological lock-

in (Arthur, 1989; Cowan, 1990). The basic idea here is that markets may get ‘stuck’ in an 

inferior technological alternative due to network effects. In our geographically focused context, 

this would mean local technological development not moving towards a better technological 

alternative developed elsewhere. As a result, industries and regions that don’t cope with more 

efficient technological alternatives may lose markets or fail, which would explain the local exit 

of firms.  

In our view, the approach presented in Hidalgo et al. (2007) is particularly suited to address 

this gap in the literature by comparing location ‘unbounded’ technological change to local 

development. One of the arguments in Hidalgo et al. (2007) is that, by focusing on an outcome-

based measure (relatedness), the relevant factors that affect the emergence of geographical-

related communalities are captured. We argue that the same reasoning applies to 

technological change: by focusing on the global innovations of a given technology, the 

communalities related to its use are captured. In the technological case, the communalities 

refer to which technical combinations are being used to address the typical problems related 

to the technology. This leads to the emergence of innovation patterns, which reflect the main 

technical routes taken with the technology. These patterns, in turn, reflect the structure of 

technological knowledge linked to the technology and tend to be relatively invariant over time 

(Dosi & Grazzi, 2006).  

Therefore, by focusing on the global innovations in a particular technology we aim at identifying 

how its use changes over time. To that end, a network perspective is particularly suited to 



7 

understanding dynamic aspects of knowledge and to identify changing structures of 

technological knowledge (Antonelli et al., 2010). The resulting innovation patterns can then be 

compared to local exploration of the technology to identify how local patterns are influenced 

by geographically ‘unbounded’ or general global technological development. In our particular 

case, we are interested in two research questions:  

1. How are the specialisation patterns linked to AI changing over time, and how do these 

changes affect its local exploration by countries?  

As pointed out in Hidalgo (2021), relatedness can anticipate changes in local specialisation 

patterns. Accordingly, we expect that any changes in the innovation patterns related to AI use 

are reflected on how AI is explored locally by countries leading its development. This is to say 

that successful recombinations developed worldwide with AI will be locally adopted by these 

leading countries. Particularly, we use the term ‘global innovations’ to refer to these successful 

recombinations that are repeated worldwide.  

Our following second research question is: 

2. How do AI leading countries create and stablish new capabilities in AI while they 

explore this technology? 

Based on Tanner (2016) we expect that the leading countries considered have capabilities in 

a variety of fields highly related to AI. This would explain particularly their technological 

leadership in the considered technology. By analysing the technological trajectory of these 

countries in AI, we expect that new capabilities developed in this technology emerge in an 

independent technological path in which new fields are explored according to their relevance 

to AI development (i.e., AI breakthrough the existing technological paths). This differs from the 

alternative in which new capabilities in AI would emerge in fields following countries’ existing 

capabilities (i.e., instead of breaking-in the existing technological paths). 

3. Data and method 
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Following (Balland et al., 2019; Boschma et al., 2014; Feldman et al., 2015; Rigby, 2015; 

Whittle, 2020), we combine a technological space perspective with specialisation indices to 

analyse knowledge dynamics and the development of local capabilities. Specialisations indices 

are used in this literature as a proxy for local capabilities, whereas patents are used as a proxy 

for innovations. We follow this implementation and further differentiate between dynamics 

occurring at the local and technological levels. Next, we describe in detail the dataset and 

method. 

3.1. Data collection and identification 

We use PATSTAT 2019 (Spring version) to identify all registered priority filings2 (granted or 

not). The creation of this patent dataset rests on three main choices: i.) strategy for identifying 

AI patents, ii.) assignment of patents to countries, and iii.) definition of the period of analysis 

and the intervals used to identify technological change.  

Following Leusin et al. (2020), we use a keyword-based search strategy for (i) identifying as 

AI-patents all patents mentioning at least one typical AI technique in their title or abstract. 

These AI techniques are the advanced statistical and mathematical models used to implement 

AI functions such as computer vision, natural language processing, knowledge representation, 

etc. They include, for example, keywords related to machine learning (e.g., deep learning, 

neural networks, classification and regression trees), logic programming (e.g., expert systems, 

logic programming) and probabilistic reasoning. The selection of these AI-techniques is based 

on the classification presented in WIPO (2019), which we complement with synonyms 

collected from Wikipedia. The resulting search strategy has a total of 36 keywords (see 

Appendix A). 

Following De Rassenfosse et al. (2019a), we assign in (ii) patents to countries by using 

inventors’ location. In contrast, to assignees’ location, this approach captures the locus of 

                                                           
2 A priority filing is the first patent application filed to protect an invention. If the same patent is registered in 
other patent offices, the following registrations are called non-priorities, constituting a patent family linked 
through the priority filing. The terms ‘patents’ and ‘priority filings’ are used interchangeably throughout the 
paper to refer to these registers. 
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knowledge creation (Squicciarini et al., 2013). We do not use the dataset presented in De 

Rassenfosse et al. (2019a), since it ends in 2014 and would omit the most recent period, for 

which we can document a substantial number of AI related inventions. As De Rassenfosse et 

al. (2019a) use additional sources to increase the location information of inventors and 

applicants related to their dataset, we perform a cross-check validation with our dataset. Taking 

the AI patents as reference, we find that 23,983 of our 42,971 AI-priorities are registered 

between 2015 and 2018. From the remaining 18,988 priorities, 15,355 are also found in the 

dataset presented by De Rassenfosse et al. (2019b). These patents hold the location 

information for 28,324 inventors, from which our dataset contains the same information for 

27,275 inventors, which suggests a 96.3% correspondence.  

Thus, based on this location proxy, we identify that more than 92% of the total number of AI 

priority filings in our dataset are accounted for by inventors from only four countries. These 

countries are China, Japan, South Korea, and the US, and are the ones we define as leading 

AI development. Japan and the US are early leaders in AI development, registering AI patents 

since as early as 1975. South Korea and China emerge in the second interval, with a particular 

spike in AI registers seen for China in the third interval. See Appendix B for more information 

on the registration of AI patents by these countries over time. 

Finally, for (iii) we select the term from 1974 to 2018 as period of analysis considering the 

priority year of the first AI related inventions 3 . This results in 29,935,041 priority filings4 

considered in our patent dataset. We chose to analyse dynamics through three 15-years 

intervals. A 15-years definition allows us both to create intervals with the same length within 

the considered period (i.e., 1974-1988, 1989-2003, and 2004-2018), and to separate early AI 

adopters (Japan & US) from latecomers (South Korea & China). The latter developed their first 

AI patents in 1989, which coincides with the first year of our second interval. Each interval also 

                                                           
3 The exceptions are 2 AI patents registered by the US in the year 1961, which were followed by a 13-year 
global hiatus of no further AI-registers that we chose to ignore; the first AI patent after this hiatus is registered 
in 1975. 
4 This number includes 72 priority filings for which the applied method of geographical proxying could not find 
the inventors’ location. 
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represents particular technological developments of AI: the rise of knowledge-based expert 

systems, which took place from 1980 to 1987 (WIPO, 2019), the fast development of machine 

learning during the 1990’s (Li & Jiang, 2017), and the culmination of machine learning through 

deep-learning, proposed in Hinton and Salakhutdinov (2006). 

3.2. Method 

We apply a technological space approach and specialisation indices to analyse the above 

described patent dataset. The technological space approach, proposed in Hidalgo et al. (2007) 

and thereafter adapted for patents (Balland, 2016; Boschma et al., 2014), displays 

technologies in a network visualization according to their particular measures of relatedness. 

These measures are based on the co-occurrence of two technologies within the same patent. 

If two technologies co-occur more often than what would be expected by chance under the 

assumption of statistical independence, we assume that they are more related to each other.  

The measure of relatedness, first conceptualized in Breschi et al. (2003), considers the fact 

that patent examiners assign one or more classification codes to each patent. A symmetrical 

matrix of co-occurrences ‘C’ is calculated to account for every possible combination between 

two distinct technologies (from technology ‘k’ = 1 until the ‘n’ last technology considered in the 

classification scheme considered, for example). The resulting symmetric matrix ‘C’, which has 

dimensions ‘n’ x ‘n’, is then normalized to avoid the overestimation of knowledge links involving 

technologies that are largely used. Breschi et al. (2003) propose the use of the cosine index 

‘S’ for this normalization, which is calculated in pairs considering every co-occurrence between 

two generic ‘i’ and ‘j’ technologies, as presented below: 

𝑆𝑖𝑗 =
∑ 𝐶𝑖𝑘𝐶𝑗𝑘

𝑛
𝑘=1

√∑ 𝐶𝑖𝑘
2 √∑ 𝐶𝑗𝑘

2𝑛
𝑘=1

𝑛
𝑘=1

 

Hidalgo et al. (2007) extend this idea by representing a normalized symmetric matrix of 

products exported by countries in a network perspective. Using a network layout that puts 

densely connected nodes in more centralized positions of the network, Hidalgo et al. (2007) 
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demonstrate that the most densely connected nodes are also related to more sophisticated 

products. 

We follow the technological space approach proposed by Hidalgo et al. (2007), but use patents 

as the unit of analysis and the cosine index proposed in Breschi et al. (2003) for normalizing 

knowledge-relatedness. We use the 3rd version of the IPC technological field classification to 

differentiate between technologies, which includes a total of 35 technological fields. This 

classification overcomes some inconsistencies of earlier classifications by i.) considering all 

existent IPC codes, ii.) balancing the size of the considered fields, and iii.) reducing the overlap 

between similar technologies (Schmoch, 2008). We build two distinct technological spaces: a 

‘global’ one, and one which is ‘AI-specific’. The global technological space considers all priority 

filings identified in the considered period. It is used to highlight the exploration of AI by the US, 

Japan, South Korea, and China. The AI-specific technological space, in turn, includes only the 

AI priority filings. This technological space is dynamic, varying from one interval to the other 

according to the AI patents registered in each interval, and is used to highlight AI’s 

development. No stocks of patents are considered from one interval to the other for any of the 

calculations. 

Moreover, we measure the specialization of every considered entity over each interval through 

the Revealed Comparative Advantage (RCA) index5, presented in Balassa (1965). If an entity 

has an RCA6 equal or higher than one, it has a specialisation, whereas values below this 

threshold show an absence of specialisation. We use the RCA both to highlight specializations 

of entities over the considered technological spaces and as an independent indicator. For the 

latter, we measure the specialization of countries in ten selected IPC subclasses (i.e., 4-digits 

IPC codes), differentiating between countries ‘general’ specialisations (i.e., based on all priority 

filings), and AI specialisations (i.e., based only on the AI priority filings). For the former, we 

                                                           

5 RCA 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑡,entity e =  

Number of patents in technology t from entity e 

Total of patents of entity 𝑒
Total number of patents in technology 𝑡 in the larger economy E 

Total number of patents in the larger economy E

  

6 Technically, we use the Revealed Technological Advantage (RTA) index, which is an extension of the RCA index 
to technologies, but the principle is the same. 
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consider the same classification used in the technological spaces, i.e. IPC technological fields. 

In the global technological space, the RCA is used to highlight countries existing capabilities 

(i.e., specialisations), whereas in the AI-specific technological space it reflects technologies 

that are used above their particular relative average in AI patents.  

4. Empirical analysis 

4.1. Identifying technologies linked to AI in the AI-specific technology space  

We first look into how AI-related innovations evolved over the considered intervals. We aim at 

identifying the main structure of technological knowledge used in AI innovations in each 

considered interval, which is stable over time.  

Accordingly, in Figure 1, we present the technologies linked to AI over the three considered 

intervals. We use colours and node formats to highlight distinct technological sectors, and node 

size to emphasize codes connectivity (regarding number of links) to other technologies7. 

Specializations, in turn, are highlighted by depicting the name of the technological field which 

has a specialization in the respective interval. 

                                                           
7 Depicted in the label ‘Degree’, which stands for Degree of Connectivity (i.e., higher values mean more 
connected technological fields), whereas the label ‘weight’ stands for the weight of the links (i.e., higher values 
mean more connections between the two technologies related to the link). 
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Figure 1. AI relatedness and specialisations over the considered intervals and IPC fields. 

 

AI started as a combination of technologies sparsely distributed in the network, which then 

evolves to become more densely connected (see Figure 1). The number of technological fields 

linked to AI innovations is 25 in the first interval, and reaches the maximum of 35 fields in the 
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second and third intervals. Specializations, i.e., the main technological fields related to AI, do 

not change much over time, as expected. All of them are exclusively within the sectors of 

‘Electrical engineering’ and ‘Instruments’. Only three technological fields change 

specializations over time. The less connected ‘Basic communication processes’ and ‘Digital 

communication’ lose their relevance after the first interval. Although, the latter presents again 

a specialization in the third interval. The field of ‘Analysis of biological materials’, in turn, is 

highlighted with a specialization in the second and third intervals. The ‘stable’ technological 

fields, which show a specialisation in every interval, are ‘Computer technology’, 

‘Measurement’, ‘Control’ and ‘IT methods for management’. 

Overall, the technological fields of ‘Control’ and ‘Computer technology’ are both essential for 

AI innovations in the first interval. After this, the latter becomes increasingly important and 

central in the AI network. In the third interval, ‘Computer technology’ is indisputably the most 

connected technological field for AI innovations. The fields of ‘Control’ and ‘Measurement’ also 

play important bridging roles. ‘Control’ connects AI to technologies related to the sector of 

‘Mechanical engineering’, while ‘Measurement’ connects AI with technologies from the 

‘Chemistry’ sector. 

4.2. Specialisations in AI fields in the technology space at the country level 

Next, we focus on all priority fillings registered in the considered period (1974 – 2018), which 

are used subsequently to analyse the local exploration of AI. This global technology space is 

presented in Figure 2. Once again, we use node colours and node formats to highlight distinct 

sectors, and node size to highlight connectivity. 
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Figure 2. Global Technological Space for IPC fields. 

One can see in the global technological space that technological fields from the same sector 

are often close to each other, highlighting the expected stylized fact that the similarity between 

technologies within the same sector is higher than the similarity across distinct sectors. 

‘Electrical engineering’-related fields are mostly placed jointly on the left side of the network, 

while ‘Mechanical engineering’ and ‘Chemistry’-related ones are placed on the top and right of 

the figure respectively (see Figure 2). One can also see that the main technological fields 

linked to AI through specializations (see Figure 1) are placed close to each other on the left 

side of the network (the only exception being the field of ‘Analysis of biological materials’, 

placed at the bottom). The field of ‘Computer technology’, which was the most connected in 

the AI network in the third interval, is also the most connected when all priority filings are 

considered in the Global perspective (see Appendix C for a complete list of the fields’ 

connectivity). Technological fields linked to the sectors ‘Mechanical Engineering’ and ‘Other 

fields’ are relatively less connected, whereas technological fields linked to the sectors 

‘Electrical engineering’ and ‘Chemistry’ are more connected. 
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Next, we use this global technological space to highlight the technological trajectory of 

countries leading AI development.  

We identify local technological development by outlining the specializations of Japan, the US, 

South Korea, and China in the global technological space over the three considered intervals. 

Thereby, we differentiate between two main kinds of specializations: General specializations 

refer to the performance of a country considering all patents registered8 in each considered 

interval. AI-related specializations, in turn, focus on AI patents, measuring the performance of 

each country according to its registers of AI patents in comparison to all AI patents registered 

in each considered interval. We use these two kinds of specialisations to create four labels 

capturing local exploration of AI, as presented in Figure 3. The colours and node formats used 

for each label are: Grey circles for no specialization of the country in the considered 

technological field (type 0), red squares for a general specialization (type 1), blue rhombus for 

an AI-specialization (type 2), and green triangles highlight that the country holds both a general 

and an AI-specialization in the same field (type 3). Furthermore, we use node size to stress 

connectivity and fields’ names to highlight the technologies at each interval that were 

previously identified (i.e., in Figure 1) as AI-specialized. 

                                                           
8 The calculation for both kinds of specializations considers the priority filings registered by all countries, not 
only the four countries in which the analysis is focused on. 
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Figure 3. Specialisations in the considered technological fields for Japan (a), United States (b), South Korea (c), and China (d).
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We detect a trend in Figure 3, which shows that the share of coinciding specializations (type 

3) steadily increases over time in comparison to the number of general specializations (type 

1). This indicates that countries increasingly combine their general and AI-specific 

specializations in the same technological fields. As a result, general-only specializations 

become less common, whereas coinciding specializations increase (red squares are overtaken 

by green triangles). Figure 4 quantifies the mentioned trend by displaying the share of 

coinciding specializations in relation to the total number of general specialisations9. 

Figure 4. Share between coinciding and general specialisations for the four considered 

countries at the technological field level. 

Surprisingly, specific trends related to AI innovations do not seem to affect how countries 

develop AI-related specializations (see Figure 3). The latecomers South Korea and China, for 

example, develop both an AI-specialization in the technological field ‘Basic communication 

processes’ when they start exploring AI in the second interval, although this field is not 

particularly relevant to AI anymore. Notably, China does not develop any kind of specialization 

(i.e., neither general or AI-specific) in the field of ‘Computer technology’ over the whole 

considered period, despite its importance to AI innovations. The country instead is the only 

                                                           
9 Calculated as: Share of coinciding specializations = 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑖𝑛𝑔 𝑠𝑝𝑒𝑐.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑖𝑛𝑔 𝑠𝑝𝑒𝑐𝑖.+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑝𝑒𝑐.
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one holding a coinciding specialization in the bridging field of ‘Measurement’ in the third 

interval, which might be better suited for China given its particular focus in fields related to the 

‘Chemistry’ sector. South Korea, in comparison, starts exploring AI by developing a general 

specialization in the ‘Computer technology’ field, which happens to be close to fields in which 

the country already had general specializations in the first interval. Conversely to China, South 

Korea’s coinciding specializations remain close to the AI cluster on the left side of the network. 

The early adopters Japan and the US present different specialization patterns over time. Japan 

starts out with some type of specialization in every field related to AI, but loses both general 

and AI-specific specializations in ‘Computer technology’ and other fields around it in the third 

interval. The US instead starts exploring the AI-side of the network mainly through AI-specific 

specializations and doesn’t lose its ‘Computer technology’ general specialization over time.  

4.3. Overall and AI specialisation in technological classes at the 4-digits IPC level 

We need to interpret our results based on the RCA index cautiously, since it compares the 

relative share of patents produced by a country to a relative global average. This implies that 

countries with few patents may present specialisations due to a low total number of patents 

(see also Soete (1987)). In our particular case, none of the considered countries has a low 

patent output. Still, an AI-specialisation might be attributed to a country in a given field just 

because the overall number of AI patents in the field is too small. Therefore, we refine our 

analysis by considering only the technologies more often used in AI patents. In this way we 

minimize the risk of having AI-specialisations linked to a country just because the number of 

AI patents linked to this technology is too low. As we have a limited number of fields strongly 

linked to AI at the technological field level, we broaden our analysis of specialization indices to 

the 4-digits IPC level (subclasses). The subclass codes are considerably more specific than 

the technological field codes, which allows us to better separate the technologies more related 

to AI. There are 645 subclasses available in the considered 2019 scheme10, from which 456 

are used at least once in one of our identified AI patents. Due to this large number, we avoid 

                                                           
10 https://www.wipo.int/classifications/ipc/en/ITsupport/Version20190101/transformations/stats.html 
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the network analysis at this stage (which is reported separately in Appendix D). We focus on 

the ten IPC subclasses most used in AI patents. These ten codes concentrate 77% of the 

subclasses used in the AI patents identified. The majority of them are related to the 

technological field of ‘Computer technology’ (namely the subclasses 'Electric digital data 

processing’ (G06F), ‘Recognition and presentation of data’ (G06K), ‘Computer Systems’ 

(G06N), ‘Image data processing or generation’ (G06T), and ‘Speech analysis or processing’ 

(G10L))11.  

We focus on the same four countries, and differentiate once again between general (see upper 

panel Figure 5) and AI-specific specialisations (see lower panel Figure 5). The main focus now 

is to disentangle if AI-specialisations coincide with general specialisations also for the 

technologies in which there is a high concentration of AI patents. Moreover, this time we use 

a non-binary RCA index12. By doing so, we can see in detail the small variations in countries’ 

specialisations that precede the consolidation or not of a particular specialisation. Additionally, 

we use the Log 10 values of the specialisation indexes for better visualization. In this way, a 

specialisation is present for values above 0 and absent for values below this threshold. 

                                                           
11 The remaining five subclasses are from the technological fields of: ‘Measurement’ (G01N), ‘Control’ (G05B), ‘IT 
methods for management’ (G06Q), ‘Digital communication’ (H04L), and ‘Medical technology’ (A61B). 
12 Meaning that it can take values between 0 and 1, and also values beyond 1. 
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Figure 5. General and AI-specific RCA across AI patent subclasses for Japan, the US, South 

Korea, and China. 

We see again that countries’ AI-related specialisations often appear in codes in which they 

hold a general specialisation (see Figure 5). Conversely, we see that rarely a specialisation in 

AI precedes a general specialisation in the same subclass. Where this is the case, it does not 

last. For example, China loses very rapidly its new A61B and G10L AI-specialisations acquired 

in the second interval, when these subclasses are not yet part of the country’s general 

specialisations. The same holds for the US in the codes G05B, G06K, and H04L, as well as 

South Korea for G06K. The only exception to this is South Korea’s sustained specialisation in 

the subclass ‘Speech analysis or processing’ (code G10L). We also find that despite Japan 

losing several of its specialisations in the AI cluster in the third interval in the network 

perspective (see Figure 3a), the country maintains specialisation advantages in the main AI 

subclasses (e.g., leading in the subclasses G05B and G06T as well as relevant in G10L, A61B, 

G01N, and G06N).  

Furthermore, there are specialisation patterns in the considered codes which are not entirely 

captured by a binary consideration of RCAs as used in the prior analysis. For example, all 

countries move towards the subclass ‘Computer systems’ (code G06N) in the AI perspective. 
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The US, an early AI adopter, is the only country that reduces its level of specialization in this 

subclass in one interval (i.e., the second interval), precisely when latecomers start developing 

AI. Japan and the US are the only countries that do develop a specialisation in this subclass, 

but China and South Korea advance steadily towards it. Conversely, a decrease in the level of 

specialisation is also seen for the subclass ‘Recognition and presentation of data’ (code G06K) 

in the AI perspective. Japan and the US ‘move away’ from this specialisation in later intervals, 

followed by South Korea and China. A similar behaviour was seen previously for the latter two 

countries in the general technological space (see Figure 3), when both developed an AI 

specialisation in the ‘obsolete’ technological field of ‘Basic communication processes’.  

Having confirmed that general and AI-specialisations often coincide for the ten most used AI 

technologies, we measure the share of coinciding specialisations at the subclass level. We do 

so for the ten considered subclasses (see Figure 6a), and for all subclasses available (see 

Figure 6b). The trend is very similar to what was seen previously at the technological field level: 

Over time, codes with a general specialisation are increasingly likely to show also an AI-

specific specialisation. For the ten considered subclasses, leading countries lose some of their 

coinciding specialisations when latecomers start exploring AI. Countries’ coinciding 

specialisations in all subclasses reach roughly a third of the scale seen previously at the 

technological field level in the third interval13. 

                                                           
13 Note that some staggering shares appear as a result of the limited number taken as reference in Figure 6a. 
These are shown for Japan and South Korea in the third interval, which appear with a 100% share of coinciding 
specialisations. These high shares are due to the limited number of general specialisations that these countries 
hold in this interval in the considered ten subclasses (Japan holds a general specialisation in the codes G06T 
and G10L, whereas South Korea does it in the code G06Q). 
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Figure 6. Share between coinciding and general specialisations for the four considered 

countries at the subclass level for the ten codes (a) and all codes (b). 

5. Discussion and concluding remarks 

5.1. Summary of the main findings 

This paper analysed the technological evolution of AI and compared it to its local exploration 

by countries leading its development. The purpose was to understand how the innovation 

patterns linked to AI changed over time, how countries leading AI development explored this 

technology, and whether AI’s changing innovation pattern was reflected on how leading 

countries explored this technology. Using a technological space framework to visualize the 

changes in relatedness between technologies linked to AI innovations, we identified a 

considerable transformation over time. AI evolved from a dispersed network of weakly related 

technologies to a dense network centred around the field of ‘Computer technology’. In this 

process, some technological fields initially linked to AI lost their importance (e.g., ‘Basic 

communication processes’), whereas others gained relevance (e.g., ‘Analysis of biological 

materials’). 

Our results indicate that these general changes in the technological development of AI were 

not uniformly reflected on its local exploration by countries leading AI development. Instead, 

the existing local knowledge was seemingly more correlated with the development of AI-related 

capabilities. Interestingly, this local knowledge didn’t hinder countries from developing AI 

specialisations in fields where there was no previous related knowledge, but it acted to 

‘preserve’ the specialisations that were linked to existing general knowledge. As a result, AI 
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specialisations developed in technologies that were not part of the local existing knowledge 

bases were very likely to vanish. This ‘selection’ process was shown to lead to the emergence 

of a pattern where local specialisations developed in AI increasingly coincide with existing 

‘general’ specialisations.  

5.2. Contributions  

This paper makes methodological and theoretical contributions. Regarding theoretical 

contributions, our findings contribute to recent literature considering technological relatedness 

as being dynamically created. In particular, we add to Juhász et al. (2021) by showing that 

geographically ‘unbounded’ dynamics also contribute to shaping technological relatedness. 

This follows the mechanism proposed in Arthur (2009) in which successful innovations that 

contribute to technological development are repeated. The repetition of these successful 

innovations creates innovation patterns, which reflect the technical routes taken to solve the 

problems typical of a technology (Dosi & Grazzi, 2006). The repetition of these technical routes, 

in turn, leads to an increase in the relatedness between the technologies linked to them.  

In this way, combinations that improve a technology’s performance significantly are expected 

to be (eventually) adopted and repeated in local innovations. The fact that this technological 

progress is weakly reflected on local technological exploration offers an explanation to why 

some local industries, once-promising and successful, eventually decline and fail. The stronger 

role of path dependency over geographically ‘unbounded’ technological development may lead 

such industries to get stuck in local versions of a technology. In this case, if a relevant 

development with the technology occurs abroad and is not successfully translated to the local 

context, existing industries may become less competitive and decline. This finding allows 

linking the idea of technological lock-in (Arthur, 1989; Cowan, 1990) to the EEG literature, 

offering an explanation to the not-yet addressed phenomena of firms leaving specific locations 

(Boschma et al., 2014; Rigby, 2015). Particularly, we documented that these dynamic 

innovation patterns occur for a particular technology over time. These dynamics are to be even 

greater when the evolution of all technologies is considered simultaneously. 
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Our findings also show that leveraging local knowledge is likely to even open new unrelated 

technological opportunities. Despite counterintuitive in the sense that this kind of leverage is 

expected to create only related technological variety, we show that the recombinatorial process 

allows new technologies to break-in locally. This happens through the recombination of a novel 

technology with the existing local knowledge-base, which may lead to the creation of a new 

technological path.  

Regarding methodology, we propose a way of ‘disentangling’ local innovations made with a 

particular technology from ‘global’ innovations. This was done by analysing these innovations 

separately. Global innovations refer to all patents registered worldwide for a given technology, 

and reflect unbounded innovation patterns. Local innovations refer to patent registers related 

to a technology proxied by location. By using the RCA index to highlight specialisation patterns 

of these distinct datasets over technological spaces, one can compare global ‘unbounded’ 

development to local development. Although based on a simple idea and implementation, we 

find no similar approach in the literature. This disentanglement allows measuring distinct kinds 

of specialisations (i.e., technological-specific and general ones), which is crucial to understand 

how new technologies are incorporated into local knowledge-bases. In this regard, we think 

our methodological approach is more intuitive than the one presented in Buarque et al. (2020), 

for example. Put simply, the authors examine how AI is integrated into the knowledge spaces 

of regions by looking at how these networks change when AI patents are excluded from them. 

In our opinion, this kind of exclusion is problematic. For one, it takes the assumption that 

technological efforts made towards developing AI wouldn’t be used to develop other 

technologies in the case that AI wouldn’t exist. Besides, a bias may be created towards regions 

with an overall low number of patents, making AI appear to be more important than it actually 

may be. 

Regarding the AI literature specifically, our investigation contributes to the identification of 

technological fields related to AI innovations in distinct intervals of time. In contrast to earlier 

studies (Buarque et al., 2020; Fujii & Managi, 2018; Klinger et al., 2018; Righi et al., 2020), we 

manage to capture the dynamic development of AI, including the use of distinct main 
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technologies over time to generate AI innovations. The consideration of this distinct set of 

technologies contrasts to findings presented in Buarque et al. (2020). The authors point out 

that developing computing-related technologies is potentially a necessary condition to develop 

AI. Our findings, stressed most clearly by the case of China, highlight that this condition doesn’t 

seem to apply to the national development of AI. The existing specialisations of China when it 

started exploring AI stress the absence of general capabilities in technological fields apparently 

central to AI development, like ‘Computer technology’, ‘Measurement’ and ‘Control’. 

Nevertheless, China managed to develop specialisations in AI through its existing knowledge 

in fields mostly related to the ‘Chemistry’ sector.  

5.3. Policy implications 

Our empirical findings are relevant to the design of policies aimed at inducing technological 

development. The concept of Smart specialisation (Foray et al., 2009) has been recently 

stressed in the EEG literature as particularly appropriate to that aim (Balland et al., 2019; 

Hidalgo, 2021; Montresor & Quatraro, 2020; Whittle, 2020). This concept proposes leveraging 

existing local capabilities to achieve economic and technological development. Our empirical 

evidence shows that local specialisations developed in fields where there are general local 

ones are likely to last longer than technological-specific specialisations developed in fields 

disconnected from local knowledge. This finding supports policies that argue for the leveraging 

of local capabilities as a way to induce further technological development, as the ones related 

to Smart specialisation. This should partially address criticisms towards Smart specialisation 

for being a ‘policy running ahead of theory’ (Foray et al., 2011). Our findings can also be linked 

to the ‘diversification dilemma’ highlighted in Balland et al. (2019). The authors associate this 

dilemma to the implementation of Smart specialisation, in which policies must consider 

between favouring the emergence of less related but more profitable (a.k.a. complex) 

capabilities, or the further developing of local existing capabilities. Balland et al. (2019) find 

that high relatedness leads to the local emergence of more profitable technologies, solving the 

dilemma in favour of the further development of existing capabilities. Our findings complement 
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this by showing that this leveraging of local knowledge possibly favours the emergence of new 

technological paths. These new paths are created through the recombination of a novel 

technology with the existing local knowledge-base. Hence, highly connected sectors may be 

the most efficient to induce this creation, as highlighted in Alshamsi et al. (2018).  

Finally, our findings also have implications for policies being created globally towards AI 

development in the so-called ‘AI global race’ (Klinger et al., 2018). They highlight the multiple 

‘entry points’ possible for AI development, which should impact policy-making towards 

leveraging the deployment of AI in combination with existing local capabilities. This strategy 

seems appropriate even for technologies not very related to AI, which was notably seen in the 

case of China through its exploration of AI in technologies related to the Chemistry sector. 

These multiple entry points may be linked due to the particular transversal nature of AI (Righi 

et al., 2020). 

5.4. Limitations and future research directions 

We need to acknowledge the limitations of our approach, of which the most explicit ones are 

linked to the data. Firstly, we identify AI innovations by just considering patents, although many 

innovations in this field are not patented. This might constitute a particular issue for AI 

innovations based on software and even more to open source software development. Hence, 

in a strict sense, our results refer to AI ‘inventions’ (with proprietary characteristics) rather than 

‘innovations’. Secondly, we consider both granted and non-granted patents, which possibly 

introduce a quality bias on our dataset. Thirdly, we develop a keyword-based search to identify 

AI, which we prefer in our case over strategies based on classification codes. However, such 

an approach is inherently subjective and sensitive to the choice of keywords. Finally, we also 

kept the ‘global technological space’ static, conversely to what we considered in the AI 

technological space. This was done to simplify the analysis and justified by our main focus on 

technological dynamics and how they interact with local knowledge. Discussions regarding the 

latter are already extensively addressed in the literature (see for example Hidalgo et al. (2007) 

and Hidalgo (2021)). 
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We also highlight that the adopted methods do not allow conclusions regarding causality. In 

particular, this applies to the emergence and failure of the different types of specialisations 

identified. We can’t argue that the short-lived aspect of AI specialisations that didn’t match the 

local knowledge-base was caused by this mismatch. These aspects are subject to further 

inspection, which would need to apply causal inference strategies to test, whether the 

indicative findings revealed in this study are robust and beyond reasonable econometric doubt. 

This might also require a larger set of countries under investigation during the observation 

period. Our study focused on four countries, which account for the lion’s share of AI patents 

during the observation. Obviously, this choice limits our ability to generalize our findings. The 

exclusive focus on AI adds to this generalization aspect. 
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Appendix A. Search strategy applied in PATSTAT 2019 spring version for identifying 

AI patents. 

The SQL query presented below comprehends all keywords used to identify AI patents. This search 

strategy is similar to the one presented and discussed in Leusin, M. E., Günther, J., Jindra, B., & 

Moehrle, M. G. (2020). Patenting patterns in Artificial Intelligence: Identifying national and international 

breeding grounds. World Patent Information, 62, 101988, with the exception that we exclude the generic 

keyword ‘Artificial Intelligence’ and its related Wikipedia synonym ‘Machine Intelligence’, which are not 

included in the list of AI-techniques presented in WIPO (2019). For more details on each keyword and 

synonym, see Leusin et al (2020), Tables 1 and 2 (pg. 3 and 4, respectively).  

Select appln_id from tls202_appln_title 
Where appln_title like '%machine learn%' OR appln_title like '%Probabilistic reason%' OR appln_title 

like '%Fuzzy logic%' OR appln_title like '%Logic Programming%' OR appln_title like '%Ontology 

engineer%' OR appln_title like '%pervised learn%' OR appln_title like '%reinforced learn%' OR 

appln_title like '%task learn%' OR appln_title like '%neural network%' OR appln_title like '%deep 

learn%' OR appln_title like '%expert system%' OR appln_title like '%support vector machin%' OR 

appln_title like '%description logistic%' OR appln_title like '%classification tree%' OR appln_title like 

'%regression tree%' OR appln_title like '%logical learn%' OR appln_title like '%relational learn%' OR 

appln_title like '%probabilistic graphical model%' OR appln_title like '%rule learn%' OR appln_title like 

'%instance-based learn%' OR appln_title like '%latent represent%' OR appln_title like '%bio-inspired 

approach%' OR appln_title like '%probability logic%' OR appln_title like '%probabilistic logic%' OR 

appln_title like '%reinforcement learn%' OR appln_title like '%multitask learn%' OR appln_title like 

'%Decision tree learn%' OR appln_title like '%support vector network%' OR appln_title like '%deep 

structured learn%' OR appln_title like '%hierarchical learn%' OR appln_title like '%graphical model%' 

OR appln_title like '%structured probabilistic model%' OR appln_title like '%Rule induction%' OR 

appln_title like '%memory-based learn%' OR appln_title like '%bio-inspired comput%' OR appln_title 

like '%biologically inspired comput%' 

UNION 
Select appln_id from tls203_appln_abstr 
Where appln_abstract like '%machine learn%' OR appln_abstract like '%Probabilistic reason%' OR 

appln_abstract like '%Fuzzy logic%' OR appln_abstract like '%Logic Programming%' OR 

appln_abstract like '%Ontology engineer%' OR appln_abstract like '%pervised learn%' OR 

appln_abstract like '%reinforced learn%' OR appln_abstract like '%task learn%' OR appln_abstract like 

'%neural network%' OR appln_abstract like '%deep learn%' OR appln_abstract like '%expert system%' 

OR appln_abstract like '%support vector machin%' OR appln_abstract like '%description logistic%' OR 

appln_abstract like '%classification tree%' OR appln_abstract like '%regression tree%' OR 

appln_abstract like '%logical learn%' OR appln_abstract like '%relational learn%' OR appln_abstract 

like '%probabilistic graphical model%' OR appln_abstract like '%rule learn%' OR appln_abstract like 

'%instance-based learn%' OR appln_abstract like '%latent represent%' OR appln_abstract like '%bio-

inspired approach%' OR appln_abstract like '%probability logic%' OR appln_abstract like 

'%probabilistic logic%' OR appln_abstract like '%reinforcement learn%' OR appln_abstract like 

'%multitask learn%' OR appln_abstract like '%Decision tree learn%' OR appln_abstract like '%support 

vector network%' OR appln_abstract like '%deep structured learn%' OR appln_abstract like 

'%hierarchical learn%' OR appln_abstract like '%graphical model%' OR appln_abstract like 

'%structured probabilistic model%' OR appln_abstract like '%Rule induction%' OR appln_abstract like 

'%memory-based learn%' OR appln_abstract like '%bio-inspired comput%' OR appln_abstract like 

'%biologically inspired comput%' 
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Appendix B. Log 10 of number of AI-priority filings by Japan, the US, South Korea, and 

China. 
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Appendix C. Technological fields connectivity considered in the global technological 

space network. 

Field name Sector Degree of 
connectivity 

Computer technology Electrical engineering 1,000 

Electrical machinery, apparatus, 
energy 

Electrical engineering 0,955 

Basic materials chemistry  Chemistry 0,938 

Organic fine chemistry Chemistry 0,913 

Measurement Instruments 0,912 

Chemical engineering Chemistry 0,906 

Audio-visual technology Electrical engineering 0,901 

Other special machines Mechanical 
engineering 

0,856 

Optics Instruments 0,839 

Pharmaceuticals Chemistry 0,825 

Materials, metallurgy Chemistry 0,822 

Macromolecular chemistry, polymers Chemistry 0,820 

Semiconductors Electrical engineering 0,804 

Surface technology, coating Chemistry 0,790 

Telecommunications Electrical engineering 0,782 

Biotechnology Chemistry 0,738 

Digital communication Electrical engineering 0,719 

Control Instruments 0,708 

Transport Mechanical 
engineering 

0,688 

Environmental technology Chemistry 0,670 

Textile and paper machines Mechanical 
engineering 

0,631 

Mechanical elements Mechanical 
engineering 

0,615 

Medical technology Instruments 0,611 

Civil engineering Other fields 0,607 

Machine tools Mechanical 
engineering 

0,602 

Handling Mechanical 
engineering 

0,601 

IT methods for management Electrical engineering 0,566 

Engines, pumps, turbines Mechanical 
engineering 

0,545 

Analysis of biological materials Instruments 0,510 

Thermal processes and apparatus Mechanical 
engineering 

0,508 

Other consumer goods Other fields 0,499 

Food chemistry Chemistry 0,491 

Furniture, games Other fields 0,427 

Basic communication processes Electrical engineering 0,376 

Micro-structural and nano-technology Chemistry 0,346 
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Appendix D. AI relatedness and specialisations over the considered intervals for IPC 

subclasses. 

  

  



36 

 

Note that, similarly to Figure 1, AI starts as a narrow network that evolves to a densely connected one 

centred around a code linked to computer technologies. Here, the central code is G06N, which refers to 

‘Computer systems based on specific computational models’. Note that all ten main subclasses 

highlighted previously in Figure 5 also appear as central here in the third interval (i.e., with a positive 

specialisation). Subclasses related to the sectors ‘Chemistry’ and ‘Other fields’ are shown mainly on the 

periphery of the network, whereas subclasses related to the sectors ‘Electrical engineering’ and 

‘Instruments’ occupy again central positions. 

 


